
Improved Stemming approach used for Text

Processing in Information Retrieval

System

Thesis submitted in partial fulfillment of the requirements for the award of

degree of

Master of Engineering

in

Computer Science and Engineering

 Submitted By

Deepika Sharma

801032006

Under the supervision of:

Dr. Deepak Garg
Associate Professor, CSED

Mr. V. K. Bhalla
Assistant Professor, CSED

COMPUTER SCIENCE AND ENGINEERING DEPARTMENT

THAPAR UNIVERSITY

PATIALA – 147004

May 2012

 ii

 iii

 iv

 ABSTRACT

Nowadays, Internet is one of the main information providers for millions of people.

There are about trillions of pages practically about all matters available on the Web.

One can find information related to any topic from the Web, however with this much

vast resource of information at hand there comes certain challenges. Some of these

challenges are how to retrieve the relevant information from such huge collection of

documents and how to make this retrieval more efficient. There are number of

solutions to solve these problems like the use of classical information retrieval

systems (library system) or web based information retrieval system (search engines).

These information retrieval systems perform lots of steps before retrieving the

information. One such step is stemming which is one of the important processes in

text processing operations. Stemming is used to map the morphologically related

words to a common stem or root word, thus reducing the index size and greatly

enhancing the recall value.

This report has discussed various information retrieval methods and ways to improve

the retrieval results using stemming approach. This report proposes few

improvements on the recently used stemmers. It mainly focuses on improving the

algorithm for finding the valid suffix-pair among various words present in the

document.

 The result of this algorithm can be used to make classes of the words and thus can be

used in creating index tables of relatively lesser index entries. The whole process of

finding such valid suffix-pairs can be done in O (n logn) which is better than other

approaches used.

 v

 TABLE OF CONTENTS

Certificate…………………………………………………………………….........i

Acknowledgement………………………………………………………………..ii

Abstract………………………………………………………………………......iii

Table of Content……………………………………………………………..…..iv

List of Figures…………………………………………………………………..viii

List of Tables……………………………………………………………………...x

Chapter 1 Introduction…………………………………………………………..1

1.1 Background………………………………………………………….1

1.2 Classical Information Retrieval……………………………………2

1.3 Types of Information Retrieval Models…………………………...2

 1.3.1 Boolean Retrieval Model……………………………………3

 1.3.2 Vector Space Model………………………………………….4

 1.3.3 Probabilistic Model…………………………………………..6

1.4 Information Retrieval on the Web…………………………………7

1.5 IR Tools on the Web….…………………………………………….9

 vi

1.6 Comparison with Classical Information

Retrieval………………10

1.7 Text Processing…………………………………………………....11

1.8 Stemming ……………………………………….…………………13

1.9 Structure of Thesis………………………………………………...14

Chapter 2 Literature Survey…………………………………………………16

 2.1 Use of Stemmer in Searching…………..….…………………….17

 2.2 Conflation Methods………………………………………………18

 2.2.1 Affix Removal Method …………………………………….19

 2.2.2 Successor Variety Method…………………………………20

 2.2.3 Table Lookup

Method……………………………………...22

 2.2.4 N-Gram Method……………………………………………23

2.3 Classification of Stemming Algorithm…………………………..24

 2.3.1 Rule Based Approach………………………………………24

 2.3.2 Statistical Approach………………………...……………...28

 2.3.3 Yet Another Suffix Stripper (YASS)………...…………....28

 vii

 2.3.4 Graph Based Stemmer (GRAS)……………......………….31

2.4 Comparison Among Stemming

approaches….………….………32

2.4.1 Stemmer

Strength………………………………………...…33

 2.4.2 Computation Time………………………………………....34

Chapter 3 Problem Statement………………………………………………..35

 3.1 Problem Definition………………………………………..………35

 3.2 Proposed

Objective………………………………………..………35

 3.3 Methodology Used…………………………………………..…….36

Chapter 4 Implementation…………………………………………………...37

 4.1 Analysis of Existing Algorithms………………………...………..37

 4.2 Design of New Algorithm………………………………..……….38

 4.2.1 Trie………………………………………………………….39

 4.2.2 The Proposed Approach…………………………………..42

 4.2.3 Complexity Analysis…………………………………….….45

 4.2.4 The Improved Algorithm…………………………………..46

 4.2.5 Algorithm to Find Valid Suffix-Pair……………………….46

 viii

 4.2.6 Flowcharts..…………………………………………………47

 4.3 Proof of Correctness for Finding the Common Prefix Among the

 Given Words in O (m)……………………………………...…..…...50

 4.4 Analysis of the Proposed Algorithm…………………..….....…….52

 4.5 Total Complexity…………………………………………..……….53

Chapter 5 Conclusion and Future Scope……………………………………55

References……………………………………………………………………..57

List of Publications……………………………………………………………60

 ix

 LIST OF FIGURES

1. Figure 1.1 Information Retrieval System…………………………………2

2. Figure 1.2 Weight Matrix of Vector Space

Model………………………..4

3. Figure 1.3 Example of Matrix Construction in Vector Space Model…...5

4. Figure 1.4 3-D View of Results in Vector Space Model…………………5

5. Figure 1.5 General Purpose Search Engine……………………………....8

6. Figure 1.6 Text Processing

Operations…………………………………..12

7. Figure 1.7 The Stemming Process………………………………………..14

8. Figure 2.1 Conflation

Methods…………………………………………...18

9. Figure 2.2 Types of Stemming Approach………………………………..24

10. Figure 2.3 Flowchart Depicting Stemming and Recording Routines….26

11. Figure 2.4 Calculations of Distance Measures…………………………30

12. Figure 2.5 Stemmer Strength……………………………………………33

13. Figure 2.6 Computation Time…………………………………………...34

14. Figure 4.1 An Example of Trie…..………………………………………40

 x

15. Figure 4.2 Internal and Leaf Node Structure of a Trie………………...41

16. Figure 4.3 Elaborate Trie Structure for Words: care, prepare, careful,

 cared, preparing, preparation, caring…………....……………………....43

17. Figure 4.4 Branched Out Words from their Common Prefix…………44

18. Figure 4.5 Compressed Trie Structure…………………………………..44

19. Figure 4.6 Flowchart to Find Common Prefixes Using Trie...………...48

20. Figure 4.7 Flowchart to Generate Valid Suffix-Pairs…………………..49

21. Figure 4.8 Basis Step for Base Pair (care, careful)……………………..50

22. Figure 4.9 (a, b, c) Inductive Step…………………………………….….52

 xi

 LIST OF TABLES

1. Table 1.1 Comparison of IR Models………………………...…..………...7

2. Table 4.1 Comparison Among Stemming Approaches…………….…...37

3. Table 4.2 Comparison of Complexity Analysis of various Trie-Node

 Implementations…………………………………………………………..45

3. Table 4.3 Step-wise Analysis of Improved

Algorithm……………………53

 1

CHAPTER 1

 INTRODUCTION

1.1 Background

Internet is the ultimate source of information in the present world. One can find

millions of documents related to any topic on the web. To have access to all the

relevant documents related to a user query one need to have a system which can

efficiently and effectively retrieve them. Information retrieval systems are widely

used to help users find the required documents as per their needs. However, these

information retrieval systems face a lot of challenges during the retrieval of

information like

 How to maximize the retrieval effectiveness

 How to keep a check on duplicate documents

 How to remove irrelevant documents from retrieved results

 How to optimize the retrieved results by placing highly ranked documents

above the less ranked documents.

Information retrieval systems can be broadly categorized into two categories mainly

based on the amount of corpus they work upon i.e. Classical Information Retrieval

Systems and Web Based Information Retrieval Systems [1].

This chapter discusses the following points:

 Introduction to Classical Information Retrieval Systems and Web Based

Information Retrieval Systems i.e. Search Engines.

 Steps that are being followed by these systems while information retrieval

process.

 Various measures to make the retrieval more efficient.

 2

1.2 Classical Information Retrieval

In the field of information retrieval the following classic problem setting is studied:

A user tries to satisfy an information need in a given collection of documents. For

that purpose the user inputs a request into the information retrieval system

containing the collection. The goal of the system is to retrieve documents with

information content that is relevant to the user‟s information need.

 Figure 1.1 Information Retrieval System

An information retrieval system has to handle two tasks:

 Processing the collection to build an internal data structure that allows

efficient access to the relevant document.

 Processing queries to convert them to systems understandable form.

There are various strategies, called models to determine which documents to return.

The basic model simply returns all documents that contain at least one of the query

terms or all of the query terms. The logic model extends the basic model with the

logical operators AND, OR and NOT.

1.3 Types of Information Retrieval Models

Information retrieval models are the mathematical models which provide a

framework for defining the search process. These retrieval models [2] make various

assumptions about the relevance of the retrieved result to simplify problem:

 Index

Ranking

Procedure

Indexer

Query

 Processor

Text

Processor

Retrieved docs

 Processed docs

 Ranked retrieved docs

System query

Index table

Corpus

Raw docs

User query

 3

- Topical versus user relevance

- Binary versus multi-valued relevance

Information retrieval models can be broadly classified into three main types [2]:

- Boolean retrieval model

- Vector space model

- Probabilistic model

Both vector space model and probabilistic model come under the category of

statistical models because they use the statistical information to determine the

relevance of documents. This information is in the form of term frequencies with

respect to a query. Boolean model is based on the exact match principle whereas the

statistical models are based on the best match principle.

1.3.1 Boolean Retrieval Model

In this model there are two possible outcomes after query processing i.e. either

TRUE or FALSE. It is based on the exact matching retrieval process i.e. the model

will retrieve the results only if there are exact match between the query text and the

stored document text. This is one of the oldest and primitive types of information

retrieval model which uses simplest form of ranking of the documents. Queries are

usually specified using Boolean operators like AND, OR and NOT.

For example: A user wants to search for news articles to “Obama”. Then besides

entering “Obama” in his query he must specify other necessary details using

Boolean operators to get the relevant documents. Following are the few instances of

query that he may enter to make the retrieval more relevant:

- President AND Obama

- President AND Obama AND NOT (university OR college)

- President AND Obama AND biography AND life AND birthplace AND

NOT (university OR college)

- President AND Obama AND (biography OR life OR birthplace) AND

NOT (university OR college)

Advantages

1. Results are predictable and relatively easy to explain.

2. Many different features can be incorporated within a single query.

 4

3. Efficient processing can be achieved since many documents can be eliminated

from search.

Disadvantages

1. Effectiveness of the retrieval results depends entirely on the type of user query.

Efficient use of boolean operators is required to make good queries.

2. Simple queries like one word query without the use of logical operators usually

do not retrieve satisfactory results.

3. It is difficult to make complex query for every possible case.

1.3.2 Vector Space Model

In this model both documents and query are represented by a vector of terms

weights. Term weight is the numerical value assigned to each term present either in

the document or in the query representing the frequency of the occurrence of that

term. From each document a collection of terms is made and corresponding to it a

matrix is drawn where the values present in the matrix represent the weight of a

particular term in a particular document.

Consider a collection of documents 1 2 nDoc , Doc ,, Doc and each document

having the collection of terms as i i1 i2 itDoc = d , d , , d , then the above collection

can be represented in a matrix form as follows:

 Term 1 Term 2 … Term t

11 12 1

21 22 2

1 2

...

...

: : : :

...

t

t

n n nt

d d d

d d d

d d d

 Figure 1.2 Weight Matrix of Vector Space Model

Consider the following example of four documents

- D1= Cook Indian and Continental Food

- D2 = South Indian Food and Deserts

- D3 = Indian Recipes Home page-Indian Cuisines

Doc1

Doc2

:

Docn

 5

- D4 = How to cook South Indian Food and Punjabi Food

TERMS DOCUMENTS

 D1 D2 D3 D4

Indian 1 1 2 1

Recipes 0 0 1 0

Deserts 0 1 0 0

Food 1 1 0 2

Continental 1 0 0 0

Cook 1 0 0 1

Homepage 0 0 1 0

And 1 1 0 1

South 0 1 0 1

Punjabi 0 0 0 1

Cuisines 0 0 1 0

 Figure 1.3 Example of Matrix Construction in Vector Space Model

Similar matrix can be drawn for the terms present in the user query. For example user

submits a query on “Indian Food” then corresponding to this query Doc 3 and Doc 4

are ranked high as compared to Doc1 and Doc2. This result can be easily visualised

using a 3-d picture as shown below:

 Figure 1.4 3-D view of Results in Vector Space Model

Term3

T
er

m
2

Term1

Doc3

Doc4

Query

 6

Documents are ranked by calculating the similarity and dissimilarity measure

among the query and document terms.

Advantages

1. Simple computational framework for ranking.

2. Any similarity measure or term weighting scheme could be used.

Disadvantages

1. Assumption of term independence.

2. No predictions about techniques for effective ranking.

1.3.3 Probabilistic Model

This model is based on the probability ranking principle, which states that an

information retrieval system is supposed to rank the documents based on their

probability of relevance to the query [3]. Human‟s uncertain needs and ever

changing requirements are considered as the base of probability ranking principle.

User may ask queries differently and same information can be represented using

different words and formats. So, this principle takes into account all these variations

and gives the results based on the statistical analysis of the distribution of words.

 Advantages

1. They provide users with a relevance ranking of the retrieved documents. Thus

the output of the retrieval is controlled by setting a relevance threshold.

2. It is easier to formulate queries because there is no need to learn any query

language.

 Disadvantages

1. They have limited expressive power for some of the operations. For example,

the NOT operation can not be represented because only positive weights are

used.

2. There is no well defined structure to express some of the important linguistic

features like phrases, same information being used in different tense forms.

 7

3. The computation of the relevance scores can be computationally expensive.

4. The result of the retrieval is displayed in the form of their ranking based on the

relevance but with a limited view of the information needed and there is no

suggestion on how to improve the queries.

5. To improve the retrieval results one has to submit larger and complex queries.

 Table 1.1 Comparison of IR Models [4]

 Boolean

 Model

Vector Space

Model

Probabilistic

Model

Goal Capture conceptual

structure and contextual

information

Rank the output

based on similarity

 Probability of

relevance

Methods Boolean operators are

used: AND, OR, NOT

Cosine Measure Use of different

models

Advantage Easy to implement

Computationally

Efficient

 Expressiveness and

Clarity

Retrieved set is

ranked as per

relevance

Always gives the

best match results

Query terms are

ranked based on

their probability

of relevance

User can control

the output by

setting a

relevance

threshold.

Issues Knowledge specific to

the use of Boolean

operators is required

Difficult to control

output

No ranking is done

No weighting of index

or query terms are done

No uncertainty

measures are calculated

NOT operator can‟t

be expressed

 Limited expressive

power

Computationally

intensive

Assumes that the

terms are

independent

 Estimation of

needed probability

 Prior language

knowledge is

needed

Assume terms

independence

 Lack of structure

to visualize the

retrieved set

 8

1.4 Information Retrieval on the Web

Information Retrieval on the Web is a variant of classical information retrieval [1].

As in classical information retrieval, a user tries to satisfy an information need in a

collection of documents. In this case the collection of documents consists of all the

web pages in the publicly accessible web. Given a user query the goal is to retrieve

high quality web pages that are relevant to the user‟s need. So, finding high quality

documents is an additional requirement that arises in the web context.

 Figure 1.5 General Purpose Search Engine

General purpose search engines are used to index a sizeable portion of the web across all

topics and domains to retrieve the information. Each such Engine consists of three major

components:

 A spider or crawler [5] browses the web by starting with a list of URLs called

the seeds. As the crawler visits these URLs, it identifies all the hyperlinks in

the page and adds them to the list of URLs which are visited recursively to

form a huge collection of documents called corpus. The corpus is typically

augmented with pages obtained from direct submissions to search engines and

various other sources. Each crawler has different policies with respect to

 Index

Ranking

Procedure

Indexer

Query

 Processor

Text

Processor

Retrieved docs

 Processed docs

 Ranked retrieved docs

System query

Index table

User query

Crawler

 Web Pages

 Repository

 9

which links are followed, how deep various sites are explored, etc. As a result,

there is surprisingly little correlation among corpora of various engines [6].

 The indexer processes the data and represents it usually in the form of fully

inverted files. However, each major Search Engine uses different

representation schemes and has different policies with respect to which words

are indexed.

 The query processor which processes the input query and returns matching

answers, in an order determined by a ranking algorithm. It consists of a front

end that transforms the input and brings it to a standard format and a back end

that finds the matching documents and ranks them.

1.5 IR Tools on the Web

Information from web can be retrieved by number of tools available ranging from

general purpose search engines to specialized search engines. Following are the

most commonly used web IR tools [1]:

1. General-Purpose Search Engine: They are the most commonly used tool for

information retrieval. Google, AltaVista, Excite are some of the examples.

Each of them has its own set of web pages which they search to answer a

query.

2. Hierarchical Directories: In this approach the user is required to choose one

of a given set of categories at each level to get to the next level. For example,

Yahoo! or the dmoz open directory project.

3. Specialized Search Engines: These search engines are specialized on an area

and provides huge collection of documents related to that specific area. For e.g.

PubMed, a search engine specialized on medical publications. [1]

4. Other Search Paradigms: There are various other search paradigms. A

Search-by-Example feature exists in various incarnations. Also various

collaborative filtering approaches and notification systems exist on the

Web.[1]

 10

1.6 Comparison with Classical Information Retrieval

Basically the differences between classical information retrieval system and web

based information retrieval system can be partitioned into two parts, namely

differences in the documents and differences in the users [1].

Differences in the documents:

 Hypertext: Documents present on the web are different from general text-only

documents because of the presence of hyperlinks. It is estimated that there are

roughly 10 hyperlinks present per document.

 Heterogeneity of document: The contents present on a web page are

heterogeneous in nature i.e., in addition to text they might contain other

multimedia contents like audio, video and images.

 Duplication: On the web, over 20% of the documents present are either near

or exact duplicates of other documents and this estimation has not included the

semantic duplicates yet.

 Number of documents: The size of web has grown exponentially over the

past few years. The collection of documents is over trillions and this collection

is much larger than any collection of documents processed by an information

retrieval system. According to estimation, web currently grows by 10% per

month.

 Lack of stability: Web pages lack stability in the sense that the contents of

Web pages are modified frequently. Moreover any person using internet can

create a web pages even if it contains authentic information or not.

The users on the web behave differently than the users of the classical information

retrieval systems. The users of the latter are mostly trained librarians whereas the

range of Web users varies from a layman to a technically sound person. Typical

user behaviour shows:

 Poor queries: Most of the queries submitted by users are usually short and

lack useful keywords that may help in the retrieval of relevant information.

 Reaction to results: Usually users don‟t evaluate all the result screens, they

restrict to only results displayed in the first result screen.

 Heterogeneity of users: There is a wide variance in web users and their web

experience.

 11

Thus, the main challenge of information retrieval on the web is how to meet the

user needs given the heterogeneity of the web pages and the poorly made queries.

To meet theses challenges, any type of information retrieval system either a classical

one or web based has to undergo four essential steps:

 Document processing: The text present in the corpus is processed into a

predefined format; stems of the words are extracted i.e. words in the document

are collated to their root words to make index entries.

 Query processing: User queries are tokenized into understandable segments,

these segments are parsed and a general query representation is made which is

then used for matching query terms with the inverted index entries.

 A search and matching function: Each document in the corpus is searched

for the query terms and based on the matching of terms; each document is

given some matching score. However, different systems may adopt different

models for performing this searching and matching.

 A ranking capability: Based on the similarity score of each document they

are retrieved as a result of user query in the decreasing order of their relevance

i.e. the documents with higher relevance will be displayed first than others

with lesser relevance.

Lots of work has been done to improve these basic modules to make retrieval more

efficient, however, this report will discuss one very basic and important step in

document and query processing i.e. Stemming.

1.7 Text Processing

The most common feature of a document or a query is that they both consist of

collection of terms. These terms are represented by some structure like there are set of

grammatical rules, preposition and blank spaces in between. So, the first and the

foremost step in any information retrieval system is the text processing [7] of the

terms present in the collection of documents, the whole process of text processing can

be visualized by figure 1.6.

 12

 Figure 1.6 Text Processing Operations [7]

Every information retrieval system adopts a full text logical view (or representation)

of the documents, they reduce the document into a set of representative keywords.

This process can be accomplished by the removal of blank spaces present in between

the terms, and then elimination of stop words such as articles and connectives. Once

Document

Blank Space

Removal

Stop words

Removal

Identification of

Noun Groups

Stemming

Automatic

or Manual

Indexing

Structure

Reorganisation

Full Text

Index Terms

Text +

Structure

Text

 13

the set of terms are obtained they are identified for the presence of noun groups and

eliminate adjectives, adverbs, and verbs. Then there is use of stemming approach

which reduces distinct words to their common grammatical root thereby creating the

distinct index terms. This complete process is called as text processing.

These text operations reduce the complexity of the document representation and allow

moving the logical view from that of a full text to a set of index terms. A full text is

clearly the most complete logical view of a document but its usage implies higher

computational costs. A small set of categories provides the easiest logical view of a

document but its usage might lead to retrieval of poor quality. Several intermediate

logical views of a document might be adopted by an information retrieval system as

described in figure 1.6. Besides adopting any of the intermediate representation, the

retrieval system might also recognize the internal structure present in the document

like its chapters, sections, subsection etc. This information on the structure of the

document might be useful and is required by the text retrieval models as discussed in

section 1.3.

This thesis will discuss in details one of the most researched [12] [13] [20] [23] [24]

and important text processing operation called as stemming.

1.8 Stemming

Stemming is a process to convert the words having morphological similarity into one

common form. For example, words like prepare, preparation, preparing are all derived

from one common root word “prepar”. So, if a user enters a query related to “How to

prepare food?” and the stored documents in the corpus have topics like “Food

Preparation”, “Steps of preparing food” then he may miss out all these related

documents if the stemming is not used. However, with the use of stemming words like

preparation, preparing, prepare will be stemmed down to their root word prepar and

would yield all the relevant documents related to the query. Moreover, while

constructing the index table the numbers of entries are also reduced because instead of

storing all the words separately only root words are stored in the index table.

 14

 Figure 1.7 The Stemming Process

Thus stemming provides two basic advantages;

 It is used to increase the Recall rate of the information retrieval. Recall rate is

defined as the number of relevant documents retrieved by total number of

documents retrieved.

 It helps to save the memory by reducing the entries in the index table, thereby

reducing the size of index table.

1.9 Structure of the Thesis

The rest of thesis is organized in the following order:

Chapter-2: This chapter will provide the overview of all recent work done in the area

of stemming. It starts with the introduction to stemming, describes various conflation

methods used to conflate a word to its derivational stem or root word. Then discusses

two main types of stemming approaches namely rule based approach and statistical

approach. Then there will a comparative analysis of these approaches on two main

parameters like stemmer strength and computation cost.

Chapter-3: This chapter gives the problem statement and methodology used to solve

the problem. There will be a gap analysis of the work done on stemming till date and

a new approach is proposed to fill these gaps or as one more alternative to be used for

stemming.

Stemming

Process

Morphological

variants of a word

(Preparation,

preparing, prepared,

prepare)

Common Root

Word
(prepar)

 15

Chapter-4: This chapter provides the solution to the problem discussed in chapter-3.

Complete discussion of the data structure as well as algorithm used will be done. Also

it explains the solution. There is a comparative analysis of the techniques done and

complete complexity analysis of the proposed algorithm.

Chapter-5: This chapter gives the conclusion of the thesis with the future scope of

the topic.

 16

 CHAPTER 2

 LITERATURE SURVEY

With the enormous amount of data available online, it is very essential to retrieve

accurate data for some user query. There are lots of approaches used to increase the

effectiveness of online data retrieval. The traditional approach used to retrieve data

for some user query is to search the documents present in the corpus word by word for

the given query. This approach is very time consuming and it may miss some of the

related documents of equal importance. Thus to avoid these situations, stemming has

been extensively used in various information retrieval systems to increase the retrieval

accuracy.

 Stemming is the conflation of the variant forms of a word into a single representation,

i.e. the stem. For example, the terms presentation, presenting, and presented could all

be stemmed to present. The stem does not need to be a valid word, but it must capture

the meaning of the word. In information retrieval systems stemming is used to

conflate a word to its various forms to avoid mismatches between the query being

asked by the user and the words present in the documents. For example, if a user

wants to search for a document on “How to cook” and submits a query on “cooking”

he may not get all the relevant results. However, if the query is stemmed, so that

“cooking” becomes “cook”, then retrieval will be successful.

Stemming has been extensively used to increase the performance of information

retrieval systems. For some international languages like Hebrew, Portuguese,

Hungarian [9], Czech, and French and for many Indian languages like Bengali,

Marathi, and Hindi [8] stemming increase the number of documents retrieved by

between 10 and 50 times [10]. For English though the results are less dramatic but

better than the baseline approach where no stemming is used. Stemming is also used

to reduce the size of index files. Since a single stem typically corresponds to several

full terms, by storing stems instead of terms, compression factor of 50 percent can be

achieved.

 17

The terms in a document can be stemmed before indexing time or before search time.

The direct advantage of stemming at the time of indexing is that indexing will be done

efficiently and also index file will be in compressed form. As index terms are already

stemmed, this operation requires no resources at search time, and the index file will be

compressed as described above. The main disadvantage of performing stemming at

index time is that the information about the full term will be lost like the form of verb

being used; grammatical usage etc, additional storage to store both the stemmed and

unstemmed words is also one of the disadvantages.

2.1 Use of Stemmer in Searching

To see how a stemmer can be used in searching, consider the following example from

the CATALOG system [11]. In this system, the terms in the user query or present in

the stored documents are stemmed during search time instead of indexing time. It

gives the users a facility to type their queries at the prompt with the string”Look for”.

For example:

Look for: Active users

As soon as the system gets this request it attempts to find all the documents about

active users. In order to accomplish this matching process CATALOG takes each

term in the user query and will try to match those terms with the terms present in the

database having same stem or root word. If any possibly related terms are found,

CATALOG presents them to the user for selection. In the case of the query term

"users," for example, CATALOG might respond as follows:

 Search Term: users

 Term Occurrences

1. user 15

2. users 1

3. used 3

4. using 2

Which terms (0 = none, CR = all):

The user can select the result based on their occurrence in the document.

 18

The above discussed method used for stemming provides a naïve user to have access

to all the conflated terms of his requirement without requiring any system knowledge

or of searching techniques. It also allows experienced searchers to focus their

attention on other search problems. Stemming may not be always appropriate so the

user may turn off the stemmer and select only some of the results of his interest to

reduce the chances of false matches.

2.2 Conflation Methods
For achieving stemming one needs to conflate a word to its various variants. Figure

2.1 shows a various conflation methods that can be used in stemming. Conflation of

words or so called stemming can either be done manually by using some kind of

regular expressions or automatically using stemmers. There are four automatic

approaches namely Affix Removal Method, Successor Variety Method, n-gram

Method and Table lookup method [11].

 Figure 2.1 Conflation Method [11] [31]

There are several criteria for judging stemmers: correctness, retrieval effectiveness,

and compression performance. There are two ways stemming can be incorrect--

overstemming and understemming. When a term is overstemmed, too much of it is

removed. Overstemming can cause unrelated terms to be conflated. The effect on IR

performance is retrieval of nonrelevant documents. For example the terms „legal‟ and

 Conflation Methods

 Manual Automatic (Stemmers)

Affix

Removal

Successor

Variety

Table

Lookup

n-gram

Longest

Match

Simple

Removal

 19

„legging‟ are derived from two unrelated terms but due to over stemming may be

stemmed to the term ‟leg‟ which may yield incorrect results. Understemming is the

removal of too little of a term. Understemming will prevent related terms from being

conflated. For example the terms „absorption‟ and „absorbing‟ are derived from same

root word „absorb‟ but due to understemming they may not be stemmed under same

root. The effect of understemming on IR performance is that relevant documents will

not be retrieved. Stemmers can also be judged on their retrieval effectiveness--usually

measured with recall and precision and on their speed, size, and so on. Finally, they

can be rated on their compression performance. Stemmers for IR are not usually

judged on the basis of linguistic correctness, though the stems they produce are

usually very similar to root morphemes, as described below.

2.2.1 Affix Removal Method

The affix removal method removes suffix or prefix from the words so as to convert

them into a common stem form. Most of the stemmers that are currently used use

this type of approach for conflation. Affix removal method is based on two

principles one is iterations and the other is longest match. A simple example of an

affix removal stemmer is one that removes the plurals from terms. A set of rules for

such a stemmer is as follows [11].

If a word ends in "ies" but not "eies" or "aies"

Then "ies" -> "y"

If a word ends in "es" but not "aes", "ees", or "oes"

then "es" -> "e"

If a word ends in "s", but not "us" or "ss"

then "s" -> NULL

An iterative stemming algorithm is simply a recursive procedure, as its name implies,

which removes strings in each order-class one at a time, starting at the end of a word

and working toward its beginning. No more than one match is allowed within a single

order-class, by definition. Iteration is usually based on the fact that suffixes are

attached to stems in a "certain order, that is, there exist order-classes of suffixes.

The longest-match principle states that within any given class of endings, if more than

one ending provides a match, the one which is longest should be removed. The first

 20

stemmer based on this approach is the one developed by [12] Lovins (1968); MF

Porter [13] (1980) also used this method. However, Porter‟s stemmer is more compact

and easy to use then Lovins. YASS is another stemmer based on the same approach; it

is however language independent is nature.

2.2.2 Successor Variety Method

Successor variety stemmers [14] are based on work in structural linguistics which

attempted to determine word and morpheme boundaries based on the distribution of

phonemes in a large body of utterances. The stemming method based on this work

uses letters in place of phonemes, and a body of text in place of phonemically

transcribed utterances.

Hafer and Weiss [14] formally defined the technique as follows:

Let α be a word of length n and iα , is a length i prefix ofα . Let D be the corpus of

words. iDα is defined as the subset of D containing those terms whose first i letters

match iα exactly. The successor variety of iα , denoted iSα , is then defined as the

number of distinct letters that occupy the i + 1st position of words in iDα . A test word

of length n has n successor varieties i, i+1 nSα Sα ,..........Sα .

Successor variety stemmers [11] use the frequencies of letter sequences in a body of

text as the basis of stemming. In less formal terms, the successor variety of a string is

the number of different characters that follow it in words in some body of text.

Consider a body of text consisting of the following words, for example.

 back, beach, body, backward, boy

To determine the successor varieties for "battle," for example, the following process

would be used. The first letter of battle is "b." "b" is followed in the text body by three

characters: "a," "e,” and "o." Thus, the successor variety of "b" is three. The next

successor variety for battle would be one, since only "c" follows "ba" in the text.

When this process is carried out using a large body of text, the successor variety of

substrings of a term will decrease as more characters are added until a segment

 21

boundary is reached. At this point, the successor variety will sharply increase. This

information is used to identify stems.

Once the successor varieties for a given word have been derived, this information

must be used to segment the word. Hafer and Weiss [14] discuss four ways of doing

this.

1. Using the cutoff method, some cutoff value is selected for successor varieties and a

boundary is identified whenever the cutoff value is reached. The problem with this

method is how to select the cutoff value--if it is too small, incorrect cuts will be made;

if too large, correct cuts will be missed.

2. With the peak and plateau method, a segment break is made after a character

whose successor variety exceeds that of the character immediately preceding it and

the character immediately following it. This method removes the need for the cutoff

value to be selected.

3. In the complete word method, a break is made after a segment if the segment is a

complete word in the corpus.

4. The entropy method takes advantage of the distribution of successor variety letters.

The method works as follows. Let |D i| be the number of words in a text body

beginning with the i length sequence of letters . Let |D ij| be the number of words in

D i with the successor j. The probability that a member of D i has the successor j is

given by
αij

αi

D

D
. The entropy of |D i| is

26 αij αij

αi 2

p=1 αi αi

D D
H = - . log

D D

Using this equation, a set of entropy measures can be determined for a word. A set of

entropy measures for predecessors can also be defined similarly. A cutoff value is

selected, and a boundary is identified whenever the cutoff value is reached.

To illustrate the use of successor variety stemming, consider the example below

where the task is to determine the stem of the word CAREFUL.

 22

Test Word: CAREFUL

Corpus: CAREFUL, CAR, COOK, CEAT, CARES, CARED, CARING, CARD,

CLIP, CARELESS, CAREFREE.

 Prefix Successor Variety Letters

C 4 A, O, E, L

CA 1 R

CAR 4 E, I, D, E

CARE 4 F, S, D, L

CAREF 2 U, R

CAREFU 1 L

CAREFUL 1 BLANK

Using the complete word segmentation method, the test word "CAREFUL" will be

segmented into "CARE" and "FUL," since CARE appears as a word in the corpus.

The peak and plateau method would give the same result.

In summary, the successor variety stemming process has three parts:

(1) First part determines the successor varieties for a word,

 (2) The information provided in the first step is used to segment the word with any of

the method described above, and

(3) Finally to select one of the segments as the stem.

2.2.3 Table Lookup Method

Terms and their corresponding stems can also be stored in a table. Stemming is then

done via lookups in the table. One way to do stemming is to store a table of all index

terms and their stems. Terms from queries and indexes could then be stemmed via

table lookup [11]. Using B-tree or Hash table, such lookups would be very fast. For

 23

example, presented, presentable, presenting all can be stemmed to a common stem

present.

There are problems with this approach. The first is that there for making these lookup

tables we need to extensively work on a language. There will be some probability that

these tables may miss out some exceptional cases. Another problem is the storage

overhead for such a table.

2.2.4 N- Gram Method

Another method of conflating terms called the shared digram method given in 1974

by Adamson and Boreham [15]. A digram is a pair of consecutive letters. Besides

digrams one can also use trigrams and hence it is called n-gram method in general

[16]. In this approach, pairs of words are associated on the basis of unique digrams

they both possess. For calculating this association measures one use Dice‟s coefficient

[11]. For example, the terms information and informative can be broken into digrams

as follows.

 information => in nf fo or rm ma at ti io on

 unique digrams = in nf fo or rm ma at ti io on

 informative => in nf fo or rm ma at ti iv ve

 unique digrams = in nf fo or rm ma at ti iv ve

Thus, "information" has ten digrams, of which all are unique, and "informative" also

has ten digrams, of which all are unique. The two words share eight unique digrams:

in, nf, fo, or, rm, ma, at, and ti.

Once the unique digrams for the word pair have been identified and counted, a

similarity measure based on them is computed. The similarity measure used is Dice's

coefficient, which is defined as:
2C

S =
A + B

where A is the number of unique digrams in the first word, B the number of unique

digrams in the second, and C the number of unique digrams shared by A and B. For

the example above, Dice's coefficient would equal (2 x 8) / (10 + 10) = .80. Such

similarity measures are determined for all pairs of terms in the database. Once such

similarity is computed for all the word pairs they are clustered as groups. The value of

 24

Dice coefficient gives us the hint that the stem for these pair of words lies in the first

unique 8 digrams.

2.3 Classification of Stemming Algorithm

Stemming algorithms can be broadly classified into two categories, namely Rule –

Based and Statistical.

 Figure 2.2 Types of Stemming Approach

Rule based stemmer encodes language specific rules where as statistical stemmer

employs statistical information from a large corpus of a given language to learn the

morphology.

2.3.1 Rule Based Approach

In a rule based approach language specific rules are encoded and based on these rules

stemming is performed. In this approach various conditions are specified for

converting a word to its derivational stem, a list of all valid stems are given and also

there are some exceptional rules which are used to handle the exceptional cases. In

Lovins stemmer, stemming comprises of two phases [12]: In the first phase, the

stemming algorithm retrieves the stem from a word by removing its longest possible

ending by matching these endings with the list of suffixes stored in the computer and

in the second phase spelling exceptions are handled. For example the word

“absorption” is derived from the stem “absorpt” and “absorbing” is derived from the

stem “absorb”. The problem of the spelling exceptions arises in the above case when

one tries to match the two words “absorpt” and “absorb”. Such exceptions are handled

very carefully by introducing recording and partial matching techniques in the

stemmer as post stemming procedures.

 Stemming

Rule - Based Statistical

 25

Recording [12] occurs immediately following the removal of an ending and makes

such changes at the end of the resultant stem as are necessary to allow the ultimate

matching of varying stems. These changes may involve turning one stem into another

(e.g. the rule rpt rb changes absorpt to absorb), or changing both stems involved by

either recording their terminal consonants to some neutral element

(absorb absor , absorpt absor), or removing some of these letters entirely,

that is, changing them to nullity (absorb absor, absorpt absor).

 26

 Figure 2.3 Flowchart Depicting Stemming and Recording Routines [12]

START

Determine where on ending list to

begin searching for a match so that

stem is at least two characters long

Search ending list for a match to the

last part of the word being stemmed

Is context

sensitive rule

satisfied, if

any?

Remove ending

Undouble final consonant

of stem, if applicable

Search list of transformations for

match on remaining stem

Record stem

according to rule

Output stem

Recording

procedure

No rule

applies

Match

found

Basic stemming

procedure

No

matching

ending

found
no

yes

Ending

found

 27

The main difference between recording and partial matching is that a recording

procedure is a part of stemming algorithm whereas partial matching procedure is

applied on the output of stemming algorithm where the stems derived from the

catalogue terms are being searched for matches to the user‟s query.

Apart form Lovins method; one more rule based method is given by MF Porter which

comprises of a set of conditional rules [13]. These conditions are either applied on the

stem or on the suffix or on the stated rules. As per the conditions, a word can be

represented in a general form like:

 m[C] (VC) [V]

Where C represents a list of consonants, V represents a list of vowels and m

represents the measure of any word. For example:

 m=0 RA, EE, BI, AT

m=1 TREES, OATS, RATES

m=2 TEACHER, TROUBLES, SITUATION

The general rule for removing a suffix is given as:

(condition)S1 S2

Where, condition represents a stem and if the condition is satisfied then suffixes S1 is

replaced by suffix S2. For example

 (m >1)ION

Here S1 is ION and S2 is null. This would map EDUCATION to EDUCAT, since

EDUCAT is a word part for which m=2.

 Advantages

1. Rule Based stemmers are fast in nature i.e. the computation time used to find a

stem is lesser.

 28

2. The retrieval results for English by using Rule Based Stemmer are very high.

Disadvantages

1. One of the main disadvantages of Rule Based Stemmer is that one need to

have extensive language expertise to make them.

2. The procedure used in this approach handles individual words: it has no access

to information about their grammatical and semantic relations with one

another.

3. The amount of storage required to store rules for stem extraction from the

words and also to store the exceptional cases.

4. These stemmers may apply over stemming and under stemming to the words.

2.3.2 Statistical Approach

 Statistical stemming is an effective and popular approach in information retrieval

[17] [18]. Some recent studies [19] [20] show that statistical stemmers are good

alternatives to rule-based stemmers. Additionally, their advantage lies in the fact that

it does not require language expertise. Rather it employs statistical information from a

large corpus of a given language to learn morphology of words. A lot of research has

been done in the area of statistical stemming method, some of the latest works are

stated below:

2.3.3 Yet Another Suffix Stripper (YASS)

Most popular stemmers encode a large number of languages specific rules built over a

length of time. Such stemmers with comprehensive rules are available only for a few

languages. In the absence of extensive linguistic resources for certain languages,

statistical language processing methods have been successfully used to improve the

performance of IR systems. Yet another suffix stripper (YASS) is one such statistics

based language independent stemmer [20]. Its performance is comparable to that of

Porter‟s and Lovin‟s stemmers, both in terms of average precision and the total

number of relevant documents retrieved the challenge of retrieval from languages

with poor resources.

In this approach, a set of string distance measures [21] is defined, and complete

linkage clustering is used to discover equivalence classes from the lexicon. The string

distance measure is used to check the similarity between two words by calculating the

 29

distance between two strings , the distance function maps a pair of string a and b to a

real number r, where a smaller value of r indicates greater similarity between a and b.

A set of string distance measures 1 2 3 4{D , D , D , and D }for clustering the words. The

main reason to calculate these distances is to find long matching prefixes and to

penalize an early mismatch.

Given two strings 0 1 n 0 1 n X = x xx and Y = y yy we first define a Boolean function

ip as penalty for an early mismatch:

 i i
i

0 if x = y 0 i min(n,n)
p =

1 otherwise

Thus, ip is 1 if there is a mismatch in the ith position of X and Y. If X and Y are of

unequal length, a shorter string will be padded with null characters to make its length

equal to the other string. Let the length of the string be n+1. We define 1D as follows:

n

1 i

i=0

1
D (X, Y) = p

2i (1)

Accordingly 2 3 4D , D and D are defined as follows:

n

2
i-m

i-m

1 1
D (X, Y) = if m > 0, otherwise

m 2
 (2)

n

3
i-m

i-m

n - m + 1 1
D (X, Y) = × if m > 0, otherwise

m 2
 (3)

n

4
i-m

i-m

n - m + 1 1
D (X, Y) = ×

n + 1 2
 (4)

Where, m represents the position of first mismatch between X and Y. Figure 2.4,

considers two pair of strings {independence, independently} and {indecent,

independence} and value of various distance measure for these two pair of words is

calculated as below. Clearly one can infer that indecent and independent are farther

apart from independence and independently.

 30

0 1 2 3 4 5 6 7 8 9 10 11 12

I N D E P E N D E N C E *

I N D E P E N D E N T L Y

 2
0 1

1 1 1
 = = 0.1363

2 2
11

D

 3
 0 1

2 1 1
 = = 0.2727 2 2

11

D 4
 0 1

2 1 1
 = = 0.2307

2 2
13

D

Edit Distance = 2

0 1 2 3 4 5 6 7 8 9 10 11

I N D E C E N T * * * *

I N D E P E N D E N C E

1
5 114

1 1 1
 = = 0.1245 2 2 2

D

 2
0 1 11 - 4

1 1 1 1
 = = 0.4980 2 2 2

4

D

 3
0 1 13 11

8 1 1 1
 = = 3.984

2 2 2
4

D

 4
 0 1 13 - 11

8 1 1 1
 = = 1.328

2 2 2
12

D

Edit Distance = 8

Figure 2.4 Calculations of Distance Measures

This distance counts the minimum number of edit operations (inserting, deleting, or

substituting a letter) required to transform one string to the other. Once similarity

between pair of words have been calculated using distance measure, cluster of the

words are made by using complete linkage algorithm. In the complete-linkage

algorithm [22], the similarity of two clusters is calculated as the minimum similarity

1
11 12

1 1
 = = 0.00073 2 2

D

 31

between any member of one cluster and any member of the other, the probability of

an element merging with a cluster is determined by a least similar member of the

cluster.

2.3.4 Graph Based Stemmer (GRAS)

GRAS is a graph based language independent stemming algorithm for information

retrieval [23]. The following features make this algorithm attractive and useful: (1)

retrieval effectiveness, (2) generality, that is, its language-independent nature, and (3)

low computational cost. The steps that are followed in this approach can be

summarized as below:

1. Find long common prefix among the word pairs present in the documents. For

this, consider the word-pairs of the form 1 1 2 2W = PS & W = PS where, P is the

long common prefix between 1 2W & W .

2. The suffix pair 1 2S & S should be valid suffixes i.e. if other word pairs also

have a common initial part followed by these suffixes such

that 1 1 2 2W = P S & W = P S . Then, 1 2S & S is the pair of candidate suffix if

large number of word pairs is of this form. Thus, suffixes are considered in

pair rather than individually.

3. Look for pairs that are morphological related i.e. if

 - They share a non-empty common prefix.

 - The suffix pair is a valid candidate suffix pair.

4. These words relationships will be modelled using a Graph where nodes

represent the words and edges are used to connect the related words.

5. Pivot node is identified i.e. pivot is considered that node which is connected

by edges to a large number of other nodes.

6. In the final step, a word that is connected to a pivot is put in the same class as

the pivot if it shares many common neighbours with the pivot.

Once such words classes are formed, stemming is done by mapping all the words in a

class to the pivot for that class. This stemming algorithm has outperformed Rule-

Based Stemmer, Statistical Stemmer (YASS, Linguistica [24] etc), and Baseline

Strategy.

 32

 Advantages

1. Statistical stemmers are useful for languages having scarce resources. Like the

Asian languages are heavily used in Asian Sub Continent but very less

research is done on these languages.

2. This approach yields best retrieval results for suffixing languages or the

languages which are morphologically more complex like French, Portuguese,

Hindi, Marathi, and Bengali rather than English.

3. They are considered as Recall – Enhancing Devices as they increase the value

of recall at a given rate.

Disadvantages

1. Most of the statistical stemmer does their statistical analysis based on some

sample of the actual corpus. As sample size decreases, the possibility of

covering most morphological variants will also decrease. Naturally, this would

result in a stemmer with poorer coverage.

2. For the Bengali lexicon, there are few instances where two semantically

different terms fall in the same cluster due to their string similarity. For

example, Akram (the name of a cricketer from Pakistan) and akraman (to

attack) fall in the same cluster, as they share a significant prefix. Such cases

might lead to unsatisfactory results.

3. Statistical Stemmers are time consuming because for these stemmers to work

one needs to have complete language coverage, in terms of morphology of

words, their variants etc.

2.4 Comparison Among Stemming Approaches

This section compares the performance of various stemming approaches discussed till

now. This comparison considers one rule-based approach and compares it with

statistical approaches like YASS and GRAS. The parameters used in this comparison

are each stemmer‟s strength and the computation time required by each stemmer to

compute the stem.

 33

2.4.1 Stemmer Strength

Stemmer Strength [25] generally represents the extent to which a stemming method

changes words to its stems. One well-known measure of stemmer strength is the

average number of words per conflation class. Formally, if Na, Nw, and Ns denote the

mean number of words per conflation class, the number of distinct words before

stemming and the number of unique stems after stemming respectively, then Na =
w

s

N

N

[19].

 Figure 2.5 Stemmer Strength

Figure 4 gives the value of aN for various stemming methods, clearly a higher value

of aN indicates a more aggressive stemmer. Among the three stemmers discussed

above, YASS appears to be particularly aggressive on all languages and produces

largest aN value for English, French and Bengali. On the other hand, GRAS is the

most aggressive on Marathi while it works equally well as rule- based stemmer for

other languages like English, French and Bengali.

1

 1

.5

2

 2

.5

3

3
.5

 English French Bengali Marathi

 V

al
u
e

o
f

N
a

fo
r

v
ar

io
u
s

S
te

m
m

in
g

M
et

h
o
d
s

RULE =

YASS =

GRAS =

 34

2.4.2 Computation Time

The comparison above clearly shows that YASS outperforms all other stemmer. One

more parameter that is used by researchers for comparing the performance of

stemmers is computation time which includes the time from submitting a query to its

processing and final retrieval. Figure 5 clearly shows that for equal number of words

in various languages like English, French, Bengali and Marathi the computation time

of YASS is far more than its closest competitor GRAS [23]. This concludes that

GRAS is far faster than YASS. In GRAS, two aspects that influence the processing

time are the density of graph, that is, average degree of a node, and the length of the

suffix.

 Figure 2.6 Computation Time

 English French Bengali Marathi

C

o
m

p
u

ta
ti

o
n

 T
im

e
(i

n
cr

ea
si

n
g
 o

rd
er

)

YASS =

GRAS =

 35

 CHAPTER 3

 PROBLEM STATEMENT

3.1 Problem Definition

As discussed in previous chapter, stemming greatly enhances the performance of

information retrieval systems. There are number of approaches to perform stemming

from rule based approach to statistical approach and graph based stemmer is one

such statistical based stemmer which has surpassed the performance of previous

stemmer to a greater extent but there are still some open issues that are to be dealt

properly.

 The very first step of grouping the words present in the documents such that

each group should have a common prefix of length at least a given threshold

value „l‟ seems theoretical in nature. In practical terms it is very difficult to

scan through the complete document of hundred of pages and make such

group of words having common prefixes.

 The approach used in the present stemmers to find the common prefixes is

very time consuming where the stemmer has to scan all the words in the first

pass and in the second pass it starts making group of those words. Thus it

takes quadratic time to find the common prefixes among the words.

 Lexicon is considered to be already sorted which may not be the case

practically.

3.2 Proposed Objective

The main objectives that are addressed in the thesis to solve the above mentioned

problem are as follows:

 To study and compare the statistical stemming approach used for suffixing

(inflectional) languages.

 36

 To propose a new approach to find the common prefix among the words

present in a document.

 To compare this new approach with those already being used to see how

efficient it is as compared with other approaches.

 To verify and analyse the results in support of this proposal.

3.3 Methodology Used

 Study the various stemming approaches used to stem the words mainly for

inflectional languages and make a comparison on them.

 Compare all the string matching algorithms based on their time and space

requirement to see which alternative is best suited to our requirement of

finding longest common prefix.

 Develop a new algorithm using the new approach

 Verify and analyse the behaviour of developed algorithm by considering

various cases of different data sets.

 37

 CHAPTER 4

 IMPLEMENTATION

4.1 Analysis of Existing Algorithm

The existing stemming algorithms are analyzed and compared on the basis of type,

nature of stemming used, principle of working, various issues. And based on this

following comparison table is made:

 Table 4.1 Comparison Among Stemming Approaches

Lovins

Stemmer

Porter

Stemmer

YASS GRAS

Type of

stemming

Rule-

Based/

 Context

 Sensitive

Rule-Based /

Context sensitive

suffix removal

algorithm

 Statistical /

Context free

algorithm

 Statistical /

Context free

algorithm

Nature of

Stemming

Language

Dependent

 Language

Dependent

 Language

Independent

 Language

Independent

Principle

of working

 Stored list

of suffixes

are used for

matching

the words.

 Exceptions

are handled

using

Recording

and Partial

matching

 Set of conditional

rules are used to

generate root

words

 It iteratively

removes the

suffixes from

words until none

of the rule applies

 String

Distance

measure is

used to find

related words

and then

complete

linkage

clustering is

used to

discover

equivalence

classes

Common

prefixes are

used to generate

valid suffix

pairs and then

set of classes of

morphologically

related words

are constructed.

Issues suffers

from over

stemming

of words

Words having

different meaning

are reduced to

same stem.

 It ignores prefixes

completely(reliable

and unreliable

remain unrelated)

.Finding

equivalence is

computationally

expensive step.

 Finding

common

prefixes and

valid suffix

pair‟s is

expensive step.

 38

From the above comparison table one concludes that the stemming approach used in

rule based method make their use very limited. The use of this approach is limited

to those languages for which the stemming rules are already specified. Moreover, if

some exception occurs to the rules then it has to be handled separately. Some of the

rule based approaches may also show understemming or overstemming as a side

effect of excessive use of rules.

On the other hand, statistical approach shows a wide usage. Statistical methods can

be used to perform stemming for resource poor languages. In this approach, the

words can be grouped under their common form by using clustering method or by

making sets of different classes. The clustering method as used in YASS is

computationally very expensive and complex. Another approach is to make classes

of different words by finding suffix-pair among them. The second approach has

been used in GRAS.

However, GRAS divides the stemming into two steps:

 The first step finds the common prefix among the different words and then

extracts valid suffix-pairs from them.

 In the second step the valid suffix-pair frequency is used to make sets of

different classes. For each class a pivot word (root word) is derived and this

word is used as a stem.

This thesis has suggested an improvement in the first step of stemming i.e. to find

valid suffix-pair. It has proposed an algorithm which is easy to implement and also

finds the suffix pair is lesser time complexity.

4.2 Design of New Algorithm

The design of the new algorithm starts with constructing Trie for all the unique

words. So first of all there is an introduction to Tries with the help of some

examples. Then the basic node structure of Trie is explained with its various

implementation alternatives and finally the improved algorithm is proposed. In the

following discussion the terms strings and words are used interchangeably.

 39

4.2.1 Trie

Trie [27] is an ordered tree data structure that is used to store strings over an

alphabet. Unlike a binary search tree, no node in the tree stores the key associated

with that node; instead, its position in the tree shows what key it is associated with.

Each node contains an array of pointers, one pointer for each character in the

alphabet and all descendants of a node have a common prefix of the string

associated with that node. The root is associated with the empty string and values

are normally not associated with every node, only with leaves.

The main property of trie that is being used in the proposed algorithm is that tries

allows words with similar character prefixes to use the same prefix data and store

the rest of the word in the form of tails or child nodes as a separate data [32]. One

character of the string is stored at each level of the tree, with first character of the

string stored at the root. The term trie comes from retrieval.

For example, in the case of English alphabetical keys, each node will represent an

array of (27) pointers to its branches, where the first 26 pointers are used for each

alphabet character and the last one for blank (“”). The actual keys are stored in leaf

(information) nodes.

Figure 4.1 illustrates an example trie for alphabetical keys. The trie stores the keys

ASCENDING, BISCUIT, BIRTH, BUS, CARE, CAREFUL, CAREER, and TROY.

 40

Figure 4.1 An Example of Trie

To access these information nodes, one follows a path beginning from a branch node

moving down each level depending on the character forming the key, until the

appropriate information node holding the key is reached. Thus the depth of an

information node in a trie depends on the similarity of its first few character (prefix)

with its fellow keys. Here, while ASCENDING and TROY occupy shallow levels

(level 1 branch node) in the trie, CARE, CAREER, CAREFUL have moved down by

level 4 levels of branch node due to their uniform prefix “CAR”. The role played by

the blank field in the branch node is evident when we move down to access CAR.

While the information node pertaining to CAR positions itself under the blank field,

A B C D … T …Z b

A B …...I …

 U …. Z b A B ……..……….… Z b

A B …... R …..…….. Z b

A ... C …. K ………..Z b

A B …... R …..…….. Z b

TROY

ASCENDING

BUS

BISCUIT BIRTH

CAREER CAREFUL CARE

 41

those of CAREER and CAREFUL having CARE as their common prefix will attach

themselves to pointers from E to F respectively of the same branch node.

Each node of the trie needs to store a key (usually a string – here an array of chars)

and an array of pointers to its branches. The branches correspond to the 26 results that

can be returned by the character position in alphabet with respect to „a‟ and the blank

character. And each node has a variable called as “NotLeaf” to mark the end of a

word- indicates if the node is information or an intern node.

The basic element- Node of a trie data structure looks like this:

Typedef struct trie_node {

 bool NotLeaf;

 trie_node *pChildren [NR];

 var_type word [20];

} node;

Where:

#define NR 27 // the American alphabet (26 letters) plus blank

typedef char var_type; //the key is a set of characters

 Figure 4.2 Internal and Leaf Node Structure of a Trie [32]

The construction for a trie_node simply sets all pointers in the node to NULL; for

intern nodes NULL key is used and for leaves the desired string is stored in word[].

 A B C ….. M ….. Z b

1 -

-

- - - -

 (a) Intern Node

 A B C ….. M …..…Z b

 - - - - - - - - - - - - - - wor

d

0

 (b) Leaf/Information Node

 42

trie_node *NewIntern();

trie_node *Leaf(char word[]);

The main abstract methods for the TRIE ADT are;

1. bool search (char string[]);

2. void insert (char string[]);

Advantages

1. The common prefix among various words can be found in O(m), where m is

the length of the common prefix.

2. Use of Trie helps in the grouping of various words sharing common prefix in

less time.

4.2.2 The Proposed Approach

This section discusses that how the idea of using Trie as a data structure for storing

the words will help in finding the common prefixes among them. Further it will show

that the time required to look for the common prefix among various words is O (m),

where m is the length of the common prefix. For this we need to consider the

following lexicon of words and construct Trie for them:

care, prepare, careful, cared, preparing, preparation, caring

 43

Figure 4.3 Elaborate Trie Structure for Words: care, prepare, careful, cared,

preparing, preparation, caring

Now to find the common prefix among these words we need to traverse the Trie in the

Depth First Search order. The words with the common prefix are branched out from

the same parent node. Such parent nodes will give the common prefixes that have the

potential of being the valid common prefix. While traversing down the Trie one needs

to search for those nodes that have more than one child node. Once such nodes are

found the parent of such nodes are considered to be potential common prefix. The

same idea can be shown from the following figures:

c

a

r

e i

n

g

caring

d f

u

 u

l

careful

cared

p

r

e

p

 c

a

r

e

d

i

n

g

preparing

prepared

a

t

i

o

n

preparation

 44

 Figure 4.4 Branched Out Words from Their Common Prefix

 Figure 4.5 Compressed Trie Structure

d

e ing

cared

 care caring

careful

ful

e
ation

preparation

 ing

preparing prepare

car prepar

c

a

r

d

e ing

cared

 care caring

careful

ful

p

r

e

p

a

r

e ation

preparation

ing

preparing prepare

O (m)

 45

4.2.3 Complexity Analysis:

Time taken to search for a common prefix or for a string in Trie and the space

requirement for such structure depends on the implementation of the internal/child

nodes.

Table 4.2 Comparison of Complexity Analysis of Various Trie-Node

Implementations [28]

Implementation Choice

Time Required

Space Required

Array Per Node

O (m)

O (n*k)

Tree Per Node

O (m log k)

O (n)

Hash Children

O (m)

O (n)

Linked List

O (m*k)

O (n*k)

 Where,

n = no of nodes in the Trie

k = total number of alphabets used in the Trie

m =number of alphabets in the string to be searched

For English alphabets value of k remain constant i.e. 26 so the space requirement

for the Tries remain O (n*26) irrespective of its implementation. The time

requirement for array, hash children, linked list implementation is comparable but

array is preferred over others because of its easy implementation. There will be no

case of collisions as in hash children and no complex handling of pointers as in

linked list implementation.

 46

4.2.4 The Improved Algorithm

The approach of stemming will be divided into two algorithms, firstly to group the

words based on their common prefixes so that one can generate the valid suffixes

from them. The second algorithm uses the result of first algorithm to generate the

classes of morphologically related words.

 There are two threshold values one for the common prefix length (l) and the other for

the frequency of valid suffix-pair (α) that are compared in this algorithm. J H Paik

[23] has suggested that value of both l and α should lie from 3 to 5.

4.2.5 Algorithm to Find Valid Suffixes

1. Remove the stop words and extra spaces from the documents so as to get a

unique list of words.

2. Construct Trie for all the unique words in the document and assign each node

with a value num_child which gives the number of children each node has.

3. Traverse down the Trie structure in DFS order and look for nodes the have

more than one children.

4. If the path from the root to the nodes with num_child>1 is greater then the

threshold value ‟l‟ then it will give us the common prefix.

5. Arrange these nodes in decreasing order of their value of num_child. Make a

list of these nodes called as list of pivot nodes p.

6. Construct a weighted graph for trie constructed above:

 Consider the list of pivot nodes p = {p1, p2…pn}.

 for (i=1 to n)

- Create edges from pi to all its child nodes, where the edges

represent candidate suffix-pair.

- The suffix pair 1 2S & S should be valid suffixes i.e. if other word

pairs also have a common initial part followed by these suffixes

such that 1 1 2 2W = P S & W = P S . Then, 1 2S & S is the pair of

valid suffix if their frequency exceeds the threshold value . Thus,

suffixes are considered in pair rather than individually.

- Compute the frequency of all suffix-pair

7. Find the set of classes by decomposing the graph using [23].

 47

4.2.6 Flowchart

The above discussed algorithm can be depicted with the help of the following

algorithm where the first flowchart explains how trie can be used to find common

prefixes and second flowchart explains how to the valid suffixes are generated while

construction a graph from trie.

 48

 Figure 4.6 Flowchart to Find Common Prefixes Using Trie

Remove the stop words and blank spaces

from the document to get unique set of words

Construct trie for the

given unique words

Traverse down the trie

using DFS

 Is

num_child>1?

No

Yes

While (number

of nodes <>

NULL)

Start

Stop

Is path

length threshold

value „l‟?

Yes

No

Path from root to present node gives

common prefix

 49

 Figure 4.7 Flowchart to Generate Valid Suffix-Pair

Start

Consider the list of

pivot nodes p

for (i=1 to n)

Create edges from pi to

all its child nodes

Edges represent the suffix –pair

and their frequency

increment i

Output the suffix

pair frequency

Stop

Is suffix-pair

frequency

 ?

Valid Suffix-pair

is generated

Yes

No

 50

4.3 Proof of Correctness for Finding the Common Prefix Among the Given

Words in O (m).

Input: A Trie structure of unique words from a document

Output: Finding common prefixes among the words in O (m)

Proof by Mathematical Induction

Basis Step: In the base step only a pair of words is considered and it is seen that their

common prefix can be found in O (m). Consider the pair (care, careful) and draw trie

for them.

 Figure 4.8 Basis Step for a Base Pair (care, careful)

Induction Hypothesis: In induction hypothesis consider that the problem of finding

common prefix among words can be solved in O (m).

Inductive Step: The above hypothesis is proved for n+1 of words. Consider the

following pairs of data sets: and, add, added, leg, legal, legally, setting, set, legged,

addition, legging

c

a

r

e

ful

care

careful

Path length

of m = 4

 51

 Figure (a)

 Figure (b)

a

n

d

d

d

itive
ition

ed

and

additive added addition

Path length m=3 is

common prefix length

add

c

r

e

a

t

e

creat

creative

creating creation

create

ion

ive

ing

Path length of m= 5 is

the common prefix

length

 52

 Figure (c)

 Figure 4.9 (a, b, c) Inductive Step

From the various cases considered in inductive step one concludes that the complexity

of finding common prefix among various words can be done in O (m) where m is the

length of common prefix among the given words. Thus the inductive hypothesis holds

true.

4.4 Analysis of the Proposed Algorithm

Before starting the complexity analysis of this algorithm consider following notations:

„n‟ = the number of words in a document.

d

r

e

a

d

 ed

dread

dreadly dreadness

dreadful

dreaded

ful
ly

ness

Path length of m= 5 is

the common prefix

length
n

c

drench

h

ing
ed

drenching drenched

Path length of
m= 6 is the

common prefix
length

 53

' ' = the total number of alphabets used to construct words since we are considering

English language words then ' ' = k = 26

„m‟ = length of the common prefix

 Table 4.3 Step-wise Analysis of Improved Algorithm

Step Analysis of Each Step Time

Requirement

Step 1 To remove Stop Words and Blank Spaces, single linear

pass over the lexicon is required

O (n)

Step 2 Construct Trie for the unique words, requires linear time O(n)

Step 3 Trie traversal using DFS, worst case complexity of DFS

for traversal of complete tree is O (|V| + |E|) where V =

no. of vertices and E= no. of edges.

Here V= * n and E= * n -1

O(|nk|+|(n-1)k|)

Step 4 Computing the common prefix by traversing from root

node to required node, these prefixes are valid if their

length >= „l‟, l is predefined threshold value.

O(m)*

Step 5 Arranging nodes in decreasing order of their value O(n log n)**[29]

Step 6 Graph construction from trie, in linear time O(n)

Step 7 Creating set of classes by decomposing the graph O(n) [23]

*using proof of correctness

**using tree sorting algorithm [29]

4.5 Total Complexity

The total time complexity can be obtained by performing summation of time

complexity of each step. The individual time complexity of each step is given

in table 4.3 and their summation gives us T(n)

 T (n) = 1 2 3 4 5 6 7 c n + c n + c (| nk + (n-1)k |) + c m + c (nlogn) + c n + c n

Where 1 2 3 4 5 6 7c , c , c , c , c , c , c represents the cost incurred in each step

 54

T (n) = 1 2 3 3 3 4 5 6 7c n + c n + c n k + c n k - c k + c m +c nlogn + c n +c n

T (n) = 1 2 6 7 3 3 4 5(c + c + c + c) n + 2 *c nk - c k + c m + c n logn

 Here 1 2 6 7c , c , c , c being the constant cost terms are merged to ic . Also 2 * 3c

are substituted by another constant jc . Similarly 3 4 5c , c and c are replaced by

another constant terms like k l mc , c , c .

T (n) = i j k l m c n + c nk - c k + c m + c n logn

T (n) = n k l mc (n + nk) - c k + c m + c nlogn

i j c and c being constant terms are replaced by single constant nc . Here k

represents the total number of character used to make different words, for

English language value of k = 26 which is again constant. Also for any

language the total number of such alphabets remains constant. So, the term

kc k is a constant term and even if it is subtracted from the other factors the

resulting changes can be ignored.

In the first term nc (n + nk) can be rewritten as nc (n (1 + k)) and further as

nc n because 1+ k is again a constant.

Thus the total cost in terms of time will be given as

T (n) = n l mc n + c m + c n logn

Out of all the three terms in above equation n logn is the largest. So, the time

complexity in terms of Big-O notation is

T (n) = O (n logn)

This time complexity is far more superior to the previously proved algorithms

[23] where it is 2O(n) .

 55

 CHAPTER 5

 CONCLUSION AND FUTURE SCOPE

Internet is a vast source of information and to harness this information various

information retrieval systems are used. These systems can range from a classical

information system like library system to a web based system like search engines. The

effectiveness of the retrieval results can be judged by the number of relevant

documents retrieved for any particular user request. To increases the effectiveness of

results the documents needs to be pre-processed and undergo text processing

operations. One such text processing operation which converts all the inflectional

words to their base form is stemming. It has been studied that stemming increases the

recall results of the retrieval performance [30] of any information retrieval system. It

is also used to maintain index table by reducing the index table entries.

Section 2.3 discussed some of the stemming approaches used till date. These

stemming approaches range from being rule based to statistics based. Rule based

approach is mainly used for some specific language where as statistical based

approach is language independent. Statistical Approach is mainly used for resource

poor languages. Each such approach has its own advantage like Porter‟s stemmer

shows high recall results for English language [13]. Its performance is comparable to

the latest statistical based stemmers as discussed in section 2.3.3. But its main

drawback is its language dependence. Similarly statistical stemmers like YASS,

GRAS shows good results for inflectional / suffixing languages but again their

performance for English is not that good. Also they are computationally expensive

methods.

A comparison among all these approaches is made in section 4.1 on the basis of their

nature, principle of working, issues. There is a proposal for new algorithm in section

4.2 which performs the step of finding suffix pair for stemming in O (n logn). It is an

 56

improvement over previously used methods where this complexity is O (2n) („n‟ =

the number of unique words present in the documents).

Future Scope

 The approach to find valid suffix-pair among the given lexicon of words in O(n logn)

is done by using tries as the base data structure but the same might be achieved by

some other data structure and that too with better time complexity. However with the

present approach one can further work on the following future aspects:

 The proposed algorithm can be used in text processing for other systems also

like maintaining dictionary words, searching words in dictionary, maintaining

library catalogue.

 The future scope in this case can be to improve the implementation of the

proposed algorithm. One can also use other data structure like compressed trie

to improve the results.

 Although string matching is not the direct application of the present approach

but the algorithm can be modified to perform string matching also.

 57

 REFERENCES

[1] James M. Abello, Panos M. Pardalos, Mauricio G. C. Resende “Algorithmic

Aspects of Information Retrieval on the Web” in “Handbook of Massive Data

Sets”, Kluwer Academic Publisher, 2002, pp 3-10.

[2] Djoerd Hiemstra “Information Retrieval Models” University of Twente Web:

http:// www.cs.utwente.nl/~hiemstra

[3] Nicholas J. Belkin and W B Croft “Information filtering and information

retrieval: two sides of the same coin” published in ACM- special issue on

Information Filtering , Volume 35 Issue 12, Dec 1992

[4] Djoerd Hiemstra “Information Retrieval Modelling” Chapter 2 Website:

http://comminfo.rutgers.edu/~aspoerri/InfoCrystal/Ch_2.html#2.3 accessed date

14
th

 March, 2012

[5] J.Cho, H.Garcia-Molina, L.Page (1998). Efficient Crawling through URL

Ordering. In (WWW7, 1998) pp 161-172

[6] S. Lawrence and C.L. Giles (1998) Searching the World Wide Web. Science,

280(5360):98.

[7] Ricardo Baesa Yates, Berthier Riberio-Neto “Modern Information Retrieval”

chapter1

[8] A. Ramanathan and D. Rao, 2003.” A lightweight stemmer for Hindi”. In

Proceedings of the 10
th

 Conference of the European Chapter of the Association

for Computational Linguistics (EACL), on Computational Linguistics for South

Asian Languages (Budapest, Apr.) Workshop.

[9] J. Savoy 2008.” Searching strategies for the Hungarian language”. Inf. Process.

Manage. 44, 1, 310–324.

[10] Robert Krovetz “Viewing morphology as an inference process” published in

proceeding SIGIR‟93 Proceedings of the 16
th

 annual international ACM SIGIR

conference on Research and development in IR

http://www.cs.utwente.nl/~hiemstra
http://comminfo.rutgers.edu/~aspoerri/InfoCrystal/Ch_2.html#2.3

 58

[11] WB Frakes, 1992, “Stemming Algorithm “, in “Information Retrieval Data

Structures and Algorithm”, Chapter 8, page 132-139.

[12] J. B. Lovins 1968. "Development of a Stemming Algorithm." Mechanical

Translation and Computational Linguistics, 11(1-2), 22-31.

[13] M. F. Porter 1980. "An Algorithm for Suffix Stripping Program", 14(3), 130-37.

[14] M. Hafer and S. Weiss 1974. "Word Segmentation by Letter Successor

Varieties," Information Storage and Retrieval, 10, 371-85.

[15] G. Adamson and J. Boreham 1974. "The Use of an Association Measure Based

on Character Structure to Identify Semantically Related Pairs of Words and

Document Titles," Information Storage and Retrieval, 10, 253-60.

[16] P. McNamee, and J. Mayfield 2004.” Character n-gram tokenization for

European language text retrieval”, Inf. Retr. 7(1-2), 73–97.

[17] J. Xu and W. B. Croft 1998.” Corpus-based stemming using co occurrence of

word variants”. ACM Trans. Inf. Syst. 16, 1, 61–81.

[18] D.W. Oard, G.A. Levow and C.I. Cabezas 2001. CLEF experiments at

Maryland:” Statistical stemming and back off translation”. In Revised Papers

from the Workshop of Cross-Language Evaluation Forum on Cross-Language

Information Retrieval and Evaluation (CLEF), Springer, London, 176–187.

[19] M. Bacchin, N. Ferro, and M. Melucci 2005. “A probabilistic model for stemmer

generation”. Inf. Process. Manage. 41, 1, 121–137.

[20] P. Majumder, M Mitra, S.K. Parui, and G. Kole (ISI), P. Mitra (IIT), and K.K.

Dutta. ”YASS: Yet another Suffix Stripper”, published in ACM Transaction on

Information System (TOIS), Volume 25 Issue 4, October 2007, Chapter 18,

Page 5-6.

[21] V. I. Levenstein 1966. Binary codes capable of correcting deletions, insertions

and reversals. Commun. ACM 27, 4, 358–368.

[22] A. K. Jain, M.N. Murthy, and P. J. Flynn 1999. “Data clustering”: A review.

ACM Comput. Surv. 31, 3, 264–323.

[23] JH Paik, Mandar Mitra, Swapan K. Parui, Kalervo Jarvelin, “GRAS : An

effective and efficient stemming algorithm for information retrieval”, published

in ACM Transaction on Information System (TOIS), Volume 29 Issue 4,

December 2011, Chapter 19, page 20-24.

[24] J. Goldsmith 2001.” Linguistica: Unsupervised learning of the morphology of a

natural language”. Comput. Linguist. 27, 2, 153–198.

 59

[25] WB Frakes and C. J. Fox 2003. Strength and similarity of affix removal

stemming algorithms. SIGIR.

[26] WB Croft, Donald Metzler, Trevor Strohman “Retrieval Models” Chapter 7 in

book”Search Engines Information Retrieval in Practice”, University of

Massachusetts , Yahoo! Research, Google, 2009

[27] L. Allison “Tries” faculty of Information technology (Clayton), Monash

University, AustraliaWebsite:

http://www.csse.monash.edu.au/~lloyd/tildeAlgDS/Tree/Trie/ Accessed date 2
nd

April 2012

[28] R. Dorrigiv, D. Roche, C. Marriott, “Tries and String Matching”, Data

Structures and Data Management, School of Computer Science, University of

Waterloo, 2010 table comparison

[29] M F Colton, P ferragina, S. Muthukrishnan “On the Sorting Complexity of

Suffix Tree Construction” Published in Journal of ACM, Volume 47 Issue 6,

Nov 2000

[30] M. Popovic and P. Willett. “The effectiveness of stemming for natural-language

access to solven textual data”. Journal of the American Society for Information

Science, 43(5):383–390, 1992.

[31] WB Frakes 1984. "Term Conflation for Information Retrieval" in Research and

Development in Information Retrieval, ed. C. van Rijsbergen. New York:

Cambridge University Press.

[32] Website: http://software.ucv.ro/~cmihaescu/ro/laboratoare/SDA/docs/trie.pdf Accessed

on 3rd April, 2012

http://www.csse.monash.edu.au/~lloyd/tildeAlgDS/Tree/Trie/
http://software.ucv.ro/~cmihaescu/ro/laboratoare/SDA/docs/trie.pdf

 60

 LIST OF PUBLICATION

[1] Deepika Sharma & Deepak Garg “Information Retrieval on the Web and its

Evaluation”. International Journal of Computer Application (0975-8887), Vol.

40-No. 3, February 2012 (Published)

